If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-66+z^2-19z=0
a = 1; b = -19; c = -66;
Δ = b2-4ac
Δ = -192-4·1·(-66)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-25}{2*1}=\frac{-6}{2} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+25}{2*1}=\frac{44}{2} =22 $
| 8b-3=7b | | 8(2l+6)=208 | | Sx5-30=115 | | z/9+4=-2 | | 15+4n=3 | | 3x30000000000000=000000000000000000 | | 13d+3=4d+21 | | 3b-4=5+2b | | 13d=4d+24 | | 4-x^2+x=2x+2 | | √(x^2+x-5)+√(x^2+8x-4)=5 | | 2y+9=27,y= | | 3x^2+6x-2=3x^2-x | | 2y+9=27,y | | 4n+17=20 | | 14f+4=5f+31 | | 8x-1=7+7 | | 6x-8=4·(-2x+5) | | 60-2w=45 | | 20x-5=55 | | 25y-3=58 | | 42=6(z+10) | | (4x-1)(x+3)+(4x-1)(x+6)=0 | | 6y-5=10 | | 10=3x=14=x | | 4·(2-3x)=-2x-27 | | 4^(2x-10)=256 | | 3x-5/11-5x=6/111 | | 6a+3=(a-5) | | 1x+2,7x=7,4 | | 14x+29=4x+319 | | (2c-6)/3=(c+7)/4 |